

Cost-effective combination navigation GI320 Technical manual

Cost-effective Integrated Navigation System

Introduction

GI320 adopts loose coupling integrated navigation technology, which deeply integrates IMU with RTK solution and observation preprocessing, and can provide real-time and high-precision navigation parameters such as position, speed and attitude.

The integrated navigation algorithm uses the GPS data as initial data for operation. If GPS data is lost, the system will run the strapdown inertial navigation calculation alone, and the calculated data will be sent to the Kalman filter for processing.

Feature

- GNSS/INS high-precision vehicle-grade integrated
 navigation system
- Cost-effective GNSS/INS integrated navigation
- Support raw data output and post-processing
- High-precision positioning and orientation
- System-wide full-frequency RTK solving
- Support precise point positioning PPP

Technical parameter

S Performance Index

Satellite signals	BDS	B1I/B2I/B3I
	GPS	L1C/A/L2P(Y)/L2C/L5
	Galileo	E1/E5a/E5b
	GLONASS	G1/G2
	QZSS	L1/L2/L5
Single Point Positioning	Plane	1.5m
	Elevation	2.5m

Bewis Sensing Technology LLC www.bwsensing.com.cn TEL:0510-85737158

Cost-effective Integrated Navigation System

DGPS	Plane	0.4m
	Elevation	0.8m
RTK	Plane	0.8cm+1ppm
	Elevation	1.5cm+1ppm
Time to first position	Cold start	<30s
	Warm start	<15s
Maximum data rate	GNSS raw observation volume	20HZ
	GNSS RTK positioning	20HZ
	INS Integrated Navigation Positioning	500HZ
	IMU raw rdata rate	500HZ
	Positioning information output	250Hz

Measuring range of roll/pitch/yaw	Roll±180°, pitch±90°, Yaw 0~360°			
Orientation accuracy	1m base	line		0.2°
	2m base	line		0.1°
Roll/Pitch (1ơ)	0.1°			
GPS Loss of Lock Accuracy (on-board CEP)	Position drift(1km or 2min)			2% ,with odometer combination
	Heading drift (1min)			0.15°
Timing accuracy (RMS)	20ns			
Velocimetric accuracy (RMS)	0.03m/s			
Speed limit (RMS)	300m/s			
Observation accuracy (RMS)	BDS	GPS	Galileo	
B1I/B1C/L1C/A/E1/G1	10cm	10cm	10cm	10cm
Pseudo-distance				

B1I/B1C/L1 C/A/E1/G1	1mm	1mm	1mm	1mm
Carrier phase				
B2I/G2/L2P(Y)/L2C/E5b	10cm	10cm	10cm	10cm
Pseudo-distance				
B2I/B2a/B2b/L5/E5a/E5b	1mm	1mm	1mm	1mm
Carrier phase				
B3I/L5/E5a/B2a	10cm	10cm	10cm	10cm
Pseudo-distance				
B3I/L5/E5a/B2a	1mm	1mm	1mm	1mm
Carrier phase				

X Internal IMU parameters

	. 1000 (Cure Dies Stehility	6°/h (10s smooth)
Gyro range	±400°/S	Gyro Blas Stability	0.5°/h (allan variance)
		Accelerometer Bias	Four (10s smooth)
Accelerometer range	±3.6g (default ± 1.2g)	Stability	Soug (Tos smooth)
Output frequency	500Hz		

Communication Interface

• Interface Type

ANT1	SMA External screw and	GNSS main antenna
	internal needle	interface
ANT2	SMA External screw and	GNSS secondary antenna
	internal needle	interface
Automotive connector	MX23A26	Automotive connector

Bewis Sensing Technology LLC www.bwsensing.com.cn TEL:0510-85737158

Serial port settings

Baud rate	8000000/ 460800 / 230400 / 115200 / 19200 / 9600 / 2400
Data bits	8
Default configuration	115200 8 1 No checksum
Serial port optional	422(485) / 232

Product List

Туре	Name	Model	Quantity	
Factory	GNSS	GI320	1	
standard				
Ontional	Antonno	Antenna BT-300 antenna + large base stud +	1 /2	
Optional	Antenna	SMA feed cable (5m)	1/2	
Ontional	4GDTU		1	
Optional	module	MD-649		
	Automotive			
Optional	connector	MX23A26SF1	1	
	plug			

Installation and Requirements

Bewis Sensing Technology LLC www.bwsensing.com.cn TEL:0510-85737158

Real Real Andware Connection Diagram

1	POWER_IN	Power supply positive	14	PPS_3.3V	Clock
		(9-36) V			Synchronization
					Pulse (3.3V)
2	GND	Power supply negative	15	VSS	Digital Ground
3	KEY	Connect to power	16	INT	Event Interrupt
		supply positive			Input
		Equipment working			
4	CANH2	Negative power supply	17	EVENT	Event Interrupt
		Device stops			Output
5	CANL2	CAN2 signal pin	18	VSS	Digital Ground
6	VSS	CAN2 signal pin	19	232RXD	232 communication
					pin
7	CANH1	Digital ground	20	232TXD	232
					Communication Pin
8	CANL1	CAN1 signal pin	21	VSS	Digital ground
9	VSS	CAN1 signal pin	22	485_A/422_T+	485/422
					communication pin
10	ETH_RX+	Digital Ground	23	485_B/422_T-	485/422

					Communication Pin
11	ETH_RX-	Ethernet Pin	24	422_R+	422
					Communication Pin
12	ETH_TX+	Ethernet Pin	25	422_R-	422
					Communication Pin
13	ETH_TX-	Ethernet Pin	26	VSS	Digital Ground

When using, please note that the wiring harness labeling may not match the actual situation, please connect the cables as shown above.

GNSS Antenna Specifications

The GNSS antenna used by the GI320S needs to be an active antenna. The GI320 provides a 5VDC antenna feed and supports a maximum of 200mA current. The recommended or required parameters are listed below: 1. Frequency points to be supported:

GNSS	frequency	GNSS	frequency
BDS	B1I/B2I/B3I	Galileo	E1/E5a/E5b
GPS	L1/L2/L5	QZSS	L1/L2/L5
GLONASS	G1/G2	-	L-band

2. Recommended gain: 40dB;

3. Recommended noise figure: NF<1.5;.

- 4. Feed: 2.8~5V;.
- 5. Phase center error: ±2mm.

Master antenna RF coaxial cable should be matched with the impedance of the antenna and receiver, the characteristic impedance is 50Ω , and the recommended line attenuation is less than 10dB. RF coaxial cable connector is adapted to the GNSS antenna at one end, and FAKRA-C is adapted to the master antenna interface of GI320 at the other end. Slave antenna RF coaxial cable should be matched with the impedance of the antenna and receiver, the characteristic impedance is 50Ω , the recommended line attenuation is less than 10dB. RF coaxial cable connector at one end to adapt to the GNSS antenna, at the other end of the FAKRA-D to adapt to the GI320 slave antenna interface.

Temperature and protection class

GI320 has the following temperature requirements. 1.Working temperature -40℃~85℃. 2.Storage temperature -40℃~85℃. Protection grade: IP54

Power supply specifications

GI320 requires the following power supply specifications.

- 1. Voltage range +9V~+24VDC
- 2. At least 10W stable output power

The GI320 is currently available in dual antenna as well as single antenna versions.

The following considerations apply when installing the GNSS antenna:

1. The GNSS antenna location is open and unobstructed above the carrier.

2. The GNSS antenna is rigidly connected to the carrier to ensure that the antenna will not shake when the carrier is moved.

3. Under dual-antenna mode, it is recommended that the distance between the antennas should be more than 1 meter, and the farther apart, the better.

GNSS dual antenna mode recommended dual antenna baseline perpendicular to the carrier forward direction, as shown in the figure below:

Installation of GI320 complete machine

In order to improve the accuracy, the IMU should be installed as close as possible to the main GNSS antenna in the horizontal direction, and it must be ensured that the GI320 is rigidly connected to the carrier, so as to ensure that the relative positions of the GI320 and the antenna on the carrier are fixed. And to ensure that the GI320 is installed firmly and reliably, in the carrier traveling process will not move or shake.

In order to simplify the system configuration, it is recommended that the combination of navigation system GI320 installed in close proximity to the position of the carrier rear axle, attitude to maintain a horizontal (that is, the Z-axis should be perpendicular to the ground pointing upward), the Y-axis of the GI320 should be pointing in the direction of the forward direction of the carrier (as shown in the figure below).

communication link

The GI320 can use the serial port to communicate with external communication devices. Currently, commands and RTK data can only be sent through the 232 port.

serial port (computing)

The Combined Navigation System GI320 provides two serial ports as shown below:

serial number	RS-232	RS-485	RS-422
COM1	Support	Not Supported	Not Supported
COM2	Not Supported	Support	Support

⁶ power connection

Pin 1 POWER_IN and pin 3 KEY power enable pin in the connector are connected to the positive side of the power supply, and pin 2 GND is connected to the negative side of the power supply.

Check GI320 status

After installing GI320, turn on the power, send the command UNLOG, it should be noted that the use of the serial port assistant to send commands need to be checked to send a new line to confirm the normal operation of GI320, such as yes, the GI320 will respond to the following content: \$Command response: OK.

Equipment use

Ensure that the GI320 has been installed as described in the previous section and is powered up and working before use.

serial port communication

The GI320 can communicate with computers and other devices through the serial port. Before the two can establish communication, both the GI320 and the computer need to be properly configured for the serial port parameters. The default serial port configuration for the GI320 is:

- 1.115200bps
- 2. No parity bit
- 3.8bit data bits
- 4.1bit stop bit
- 5.No parity bit

command	serial	serial port	Parameter Description
header	device	parameter	
CONFIG	COM1 COM2	Baud rate	Setting the baud rate of the serial port

Only COM1 supports port configuration using the command CONFIG. An example of modifying the COM1 serial port configuration is shown below:

directives	descriptive
config com1	Set com1 baud rate to 115200.
115200	You can set the baud rate of com1,com2,com3 to any one
	of 2400,9600,19200,115200, 230400,460800,8000000
	respectively.

The command format is:

CONFIG [serial port device number] [serial port attribute parameter] Simplified ASCII syntax: Command Header Serial device Serial port parameters Parameter Description CONFIG COM1

COM2 Baud rate Sets the baud rate of the serial port.

GNGGA GNSS Multi-system Joint Positioning Data

This instruction is used to set the current serial port or specified serial port to output the result of multisystem joint positioning, and the output information contains the time and positioning related data of GNSS receiver. The statement starts with GNGGA. Depending on the satellite systems involved in positioning, it may be GPGGA, BDGGA, GLGGA, GAGGA, etc. When only the GPS satellite system is involved in the positioning solution, it will be output in the form of GPGGA; when only the BDS satellite system is involved, it will be output in the form of GPGGA.

When only the GPS satellite system is involved in the positioning solution, the output is in the form of GPGGA; when only the BDS satellite system is involved in the positioning solution, the output is in the form of BDGGA; when only the GLONASS

When only the GLONASS satellite system is involved in the positioning solution, the output is in the form of GLGGA; when only the Galileo satellite system is involved in the positioning solution, the output is in the form of GAGGA.

Output in the form of GAGGA. The output is in GNGGA when only GLONASS satellite system is involved in the position solution, and in GAGGA when only Galileo satellite system is involved in the position solution.

Simplified ASCII format:

GNGGA 1 Outputs 1Hz GNGGA information from the current serial port.

GNGGA COM2 1 Outputs a 1Hz GNGGA message at com2.

Message output:

\$GNGGA,025754.00,4004.74102107,N,11614.19532779,E,1,18,0.7,63.3224,M,-9.7848,m,00,0000*58

GNGGA Data Structure

ID	field	Data Description	notation	typical example
1	\$GNGGA	Log header		\$GNGGA
2	utc	The UTC time to which the	hhmmss.ss	173568.00
		location corresponds.		
3	lat	hh/mm/ss.ss	.	3251.2654
4	Lat dir	Latitude (DDmm.mm)	а	N
5	lon	Latitude direction (N = North, S = South)	ууууу.уу	12033.3592
6	lon dir	Longitude (DDDmm.mm)	а	E
7	qual	Longitude direction (E = East,	х	1
		W = West)		
8	# sats	GPS Quality Indicator	хх	10
9	hdop	0 = Positioning unavailable or	X.X	1.0
		invalid		
10	alt	1 = Single point fix	X.X	1021.45
11	a-units	2 = Pseudorange Differential or	М	М
		SBAS positioning		
12	undulatio	4 = RTK fixed solution	X.X	-17.183
	n			
13	u-units	5 = RTK floating point solution	М	М
14	age	6 = Inertial guidance positioning	ХХ	(00 without differential
				data)
15	stn ID	7 = Fixed Position for User	хххх	(00 when no
		Setting		differential data)
16	*хх	Position)	*hh	*3F
17	[CR][LF]	Number of satellites in use. May		[CR][LF]
		not match the number seen		

IMU Raw Data Information This statement contains an indication of the IMU status and the measured values of the accelerometers and gyroscopes relative to the IMU housing coordinate system. Command Format. RAWIMUA COM1 1 RAWIMU Data Format

ID	field	Data Description
1	\$RAWIMUA	Log Header
2	Week	GNSS Week
3	Seconds Into Week	Seconds per week
4	Z Accel Output	Velocity varies along the Z-axis.
5	Y Accel Output	Velocity varies along the Y-axis.
6	X Accel Output	Velocity variation along the X-axis.
7	Z Gyro Output	The amount of angular change in the right-handed helix
		along the Z-axis.
8	Y Gyro Output	The amount of angular change in the right-handed helix
		along the Y-axis.
9	X Gyro Output	The amount of angular change in the right-handed helix
		along the X-axis.
10	*xx	Checksum
11	[CR][LF]	Statement terminator

INSPVA Combined Navigation Position, Speed and Attitude Information

Sets up the output of the combined navigation and positioning results, with ASCII statements beginning with "#INSPVA".

Recommended input. INSPVAA com2 1 INSPVA Data Structure

ID	field	Data Description
1	\$INSPVA	Log Header
2	Week	GNSS Week
3	Seconds	Seconds per week

4	Latitude	Latitude (WGS84) [degrees]
5	Longitude	Longitude(WGS84) [degrees]
6	Height	Ellipsoid height (WGS84) [m]
7	East Velocity	Eastward velocity (negative for southward) [m/s]
8	North Velocity	Northward velocity (negative for westward direction) [m/s]
9	Up Velocity	Velocity in the sky direction [m/s]
10	Roll	Cross-roll angle (right-handed spiral along Y-axis) [degrees]
11	Pitch	Pitch angle (right hand spiral along X-axis) [degrees]
12	Azimuth	Heading angle, counterclockwise from north (right-handed helix
		around the Z axis), which is the inertial azimuth calculated by the
		IMU gyro through a combined filter
13	Status	INS Status
14	хххх	32-bit CRC
15	[CR][LF]	Statement terminator (ASCII only)

INSPVB Combined Navigation Position, Velocity and Attitude Information Sets up the output of the combined navigation and positioning results in a binary statement that starts with "#INSPVB". Recommended input.

INSPVAB com2 1 INSPVB Data Structure

ID	field	data description	typology	Byte	Byte	
				Count	Count	
				Byte	Byte	
				Offset	Offset	
1	Synchronization Segment	0x57	char	1	0	
2	Frame Information	0x00	char	1	1	
3	Length Segment	0x5B	char	1	2	
4	Address Segment	0x00	char	1	3	
5	Command Segment	0x03	char	1	4	

6	data	Week	GNSS Week	Ulong	4	8
	segme	Seconds	Seconds per week	Double	8	16
	nt	Latitude	Latitude (WGS84) [degrees]	Double	8	24
		Longitude	Longitude (WGS84)	Double	8	32
			[degrees].			
		Height	Ellipsoid Height (WGS84)	Double	8	40
			[m]			
		East Velocity	Eastward velocity (negative	Double	8	48
			for southward) [m/s]			
		North Velocity	Northward velocity (negative	Double	8	56
			for westward direction) [m/s]			
		Up Velocity	Velocity in the sky direction	Double	8	64
			[m/s]			
		Roll	Cross-roll angle (right-	Double	8	72
			handed spiral along Y-axis)			
			[degrees]			
		Pitch	Pitch angle (right hand spiral	Double	8	80
			along X-axis) [degrees]			
		Azimuth	Heading angle,	Double	8	88
			counterclockwise from north			
			(right-handed helix around			
			the Z axis), which is the			
			inertial azimuth calculated by			
			the IMU gyro through a			
			combined filter			
		Status	INS Status	Enum	1	89
7		хххх	32-bit CRC	Hex	4	93

Other commands

Unlog Stop Serial Port Output

This instruction is used to stop the serial port from outputting specific data messages. Configurable parameter [Statement] stops the output of corresponding data information;

Configurable parameter [Port] to stop port output. If no port is specified, the command defaults to the port currently receiving the command; if no message name is specified, the output of all messages will be stopped.

The command format is:

UNLOG [port] [message]

Simplified ASCII Syntax

UNLOG Stop outputting all messages for the current port.

UNLOG GNGGA Stop the output of GNGGA statement for the current serial port.

UNLOG COM1 Stop all messages from com1.

UNLOG COM2 GNGGA stops the GNGGA statement output from com2.

The parameters of the Unlog command are as follows

command header	port number	Description
UNLOG	COM1	Name of the message that
	СОМ2	will stop the output

saveconfig Save User Configuration This command saves the current user configuration. The command format is: SAVECONFIG Simplified ASCII syntax: SAVECONFIG The parameters of the saveconfig command are as follows

command header	command parameter	descriptive
SAVECONFIG		保存用户配置

IMU to Main Antenna Lever Arm Parameter Configuration

Use this command to enter the offset between the IMU and the GNSS main antenna phase center, i.e., the inertial guidance to main antenna pole arm

parameter. The measurement of the boom parameter should be as accurate as possible, especially in RTK mode, and an error of 1 cm is preferred. Any error in the boom

Any error in the pole arm parameter will be directly converted to an error in the inertial navigation system position. x, y, and z represent the IMU to main antenna phase center vector.

X, Y and Z represent the vector from the IMU to the center of phase of the main antenna.

To improve accuracy, the IMU should be mounted horizontally as close as possible to the main GNSS antenna, with the IMU positioned in the upper left corner of the GI320.

IMU Offset to Antenna Phase Center

Command Format. CONFIG LEVER ARM x y z Simplified ASCII syntax: CONFIG LEVER ARM 0.05 -1.05 0.03 CONFIG LEVER ARM 0.05 -1.05 0.03 IMU to main antenna arm parameter configuration

command	parameters	Parameter Description
header		
	x	X-direction offset, unit: meter, range -100~100, retain two
CONFIG		decimal places
I EVER	v	Y direction offset, unit: meter, range -100~100, retain two decimal
		places
ARM	7	Z direction offset, unit: meter, range -100~100, retain two decimal
	2	places

Appendix 2: Binary Protocol Format

GI320

Data frame description

Name	Length	Description
Synchronised	1 Byte	Fixed to 0x57 for data frame synchronisation
segments		
Frame information	1 Byte	 Indicates the information of the data frame Bit 7 Frame information check, 0 when the number of 1's in Bit 6 to Bit 0 is even, 1 when the number of 1's is odd Bit 6 Reserved, constant 0 Bit 5:4 Data length of the length segment 00: 1 byte 01: 2 bytes 02: 4 bytes 03: Reserved Bit 3:2 Data length of the address segment 00: 1 byte 00: 1 byte
		01: 2 bytes 02: 4 bytes 03: Reserved Bit 1:0 Data length of the command segment 00: 1 byte 01: 2 bytes 02: 4 bytes 03: Reserved
Length Segment	1/2/4 Byte	Number of bytes from the address segment (inclusive) to the end segment (inclusive), high byte first, number of bytes determined by Bit 5:4 of the frame information
Address segment	1/2/4 Byte	Address of the target sensor of the data frame, high byte first, number of bytes determined by Bit 3:2 of the frame messag.The sensor will only respond if this address is equal to the sensor address or if it is equal to 0
Command segment	1/2/4 Byte	Command message of the data frame, high byte first, number of bytes determined by Bit 3:2 of the frame message. Determines the role of the data frame, the lowest bit is 0 for sending to the sensor and the lowest bit is 1 for returning from the sensor

SENSING Cost-effective Integrated Navigation System

GI320

Data	0~n	Data information corresponding to the command segment,
segment	Byte	typically sensor readings or configuration parameters
Ending	4 Byte	Checksum information for the data frame, from the frame
paragraph		information (included) to the CRC checksum value of the data
		segment (included), with the high byte first
		The CRC information is as follows:
		Width: 32 bits
		Polynomial: 04C11DB7
		Initial value: FFFFFFF
		Resulting iso-or: 00000000
		Input inverted: No
		Output inverted: No

Combined navigation

Wuxi Bewis Sensing Technology LLC

Add: Building 30, NO. 58, Xiuxi Road, Binhu District, Wuxi City, Jiangsu Province, China

Tel: +86 18921292620

- Mail: sales@bwsensing.com
- Web: www.bwsensing.com