











# Gyro100-1000

**MEMS Gyroscope Technical Manual** 









#### Introduction

Gyro100-1000gyroscope is a silicon based MEMS gyroscope developed by Bewis Sensing Tech, which has completely independent intellectual property rights. Small size ceramic package, with high precision, wide range, large impact resistance, wide temperature range, full digital output and other characteristics.

#### **Features**

- Small Size: 10mm×10mm×3.5mm
- 24bits digital output
- I<sup>2</sup>C or SPIbus output
- Operating temperature: -40°C~ +85°C
- low power consumption <70mW</li>
- Shock-resistance: 20000g
- interrupt mode or sleep mode
- Measuring Range: 1000°/s

### **Application**

- Inertial navigation
- AHRS
- UAV flight control

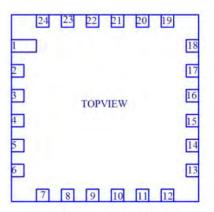
- Integrated navigation
- Angular velocity measurement
- Dynamic Inclination Sensor

## **Specification**

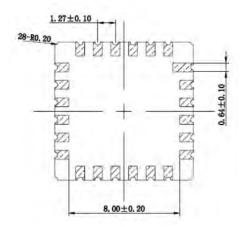


### **)** Electrical Specifications

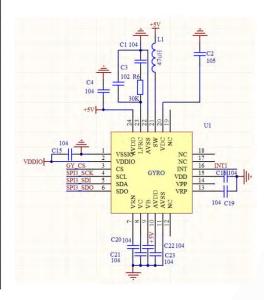
| Parameter           | Minimum value | Typical values | Maximum value | Unit |
|---------------------|---------------|----------------|---------------|------|
| Power supply        | +4.95         | +5             | +5.05         | V    |
| Operating temperatu | re -40        |                | +85           | °C   |
| Storage temperature | -55           |                | +125          | °C   |


#### Performance Specifications

| Parameter                       | Typical values          | Unit           |
|---------------------------------|-------------------------|----------------|
| Measuring range                 | +1000                   | °/s            |
| Bias stability                  | 1 (Allan variance)      | °/h            |
| Bias repeatability              | 1 (Allan variance)      | °/h            |
| Full temperature bias stability | 3 (Allan variance)      | °/h            |
| Startup time                    | 0.3                     | S              |
| Random walk coefficient         | 20                      | °/h/√Hz        |
| Scale factor nonlinearity       | < 200                   | ppm            |
| Scale factor repeatability      | 100                     | ppm            |
| Scale factor temperature coeff  | icient 50               | ppm/°C         |
| Threshold value                 | 0.01                    | °/s            |
| Resolution                      | 0.01                    | °/s            |
| Acceleration sensitivity        | 20                      | °/h /g         |
| Random vibration performance    | te 30                   | °/h            |
| Anti-overload                   | 20000                   | g              |
| Bandwidth                       | 110                     | Hz             |
| Data refresh rate               | <2000                   | Hz             |
| Power consumption               | <. 0                    | mW             |
| Data output format              | I <sup>2</sup> C or SPI | Digital output |
| Input voltage                   | 5                       | VDC            |
| Weight                          | 1                       | g              |
| Size                            | 10*10*3.5               | mm             |




## Pin Definition


| Number | Name  | Туре          | Function                                |  |
|--------|-------|---------------|-----------------------------------------|--|
| 1      | VSSIO | Input         | Digital GND                             |  |
| 2      | VDDIO | Output        | I/O power supply,+3.3V or               |  |
|        |       |               | +5V                                     |  |
| 3      | CS    | Input         | I <sup>2</sup> C/SPI Operating mode     |  |
| 4      | SCL   | Input         | I <sup>2</sup> C or SPI clock           |  |
| 5      | SDA   | Bidirectional | I <sup>2</sup> C DATA or SDI of SPI     |  |
| 6      | SDO   | Output        | Address selection for I <sup>2</sup> C, |  |
|        |       |               | connect +5V or SDO of SPI               |  |
| 7      | VRN   | Output        | Connect to GND with a 0.1uF             |  |
|        |       |               | ceramic capacitor                       |  |
| 8      | VC    | Output        | Connect to GND with a 0.1uF             |  |
|        |       |               | ceramic capacitor                       |  |
| 9      | VB    | Output        | Connect to GND with a 0.1uF             |  |
|        |       |               | ceramic capacitor                       |  |
| 10     | AVDD  | Input         | Voltage +5V                             |  |
| 11     | AVSS  | Input         | Power supply GND                        |  |
| 12     | NC    |               | Hanging                                 |  |
| 13     | VRP   | Output        | Connect to GND with a 0.1uF             |  |
|        |       |               | ceramic capacitor                       |  |
| 14     | VPP   | Input         | Used at factory settings                |  |
| 15     | VDD   | Output        | Connect 0.1u capacitor                  |  |
| 16     | INT   | Output        | Interrupt pin output                    |  |
| 17     | NC    |               | Hanging                                 |  |
| 18     | NC    |               | Hanging                                 |  |
| 19     | NC    |               | Hanging                                 |  |
| 20     | VDC   | Output        | High voltage on chip ,connect           |  |
|        |       |               | to GND with a 0.1uF ceramic             |  |
|        |       |               | capacitor, withstand voltage            |  |
|        |       |               | 50V                                     |  |
| 21     | SW    | Output        | Connect a 47uH inductor to              |  |
|        |       |               | +5V                                     |  |
| 22     | AVSS  | Input         | Power supply GND                        |  |
| 23     | LPRC  | Output        | Connect resistor circuit                |  |
| 24     | AVDD  | Input         | Voltage +5V                             |  |



Chip pin arrangement



Chip size



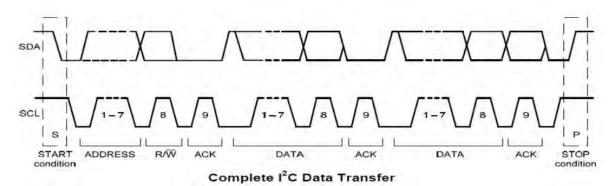
[Note] Recommended inductor model: XPL2010-473MLB

Typical circuit

#### Internal register description:

| Address | Bit[7]           | Bit[6]          | Bit[5] | Bit[4]     | Bit[3] | Bit[2] | Bit[1] | Bit[0] |  |
|---------|------------------|-----------------|--------|------------|--------|--------|--------|--------|--|
| 0x12    | - 1-1            | ADCFlag         |        | -          | je,    | 1      | -      | -      |  |
| 0x1D    |                  |                 | C      | OUT_X_L[7: | 0]     |        |        |        |  |
| 0x1E    |                  | OUT_X_M[15:8]   |        |            |        |        |        |        |  |
| 0x1F    | OUT_X_H[23:16]   |                 |        |            |        |        |        |        |  |
| 0x1A    |                  | OUT_TEMPL[7:0]  |        |            |        |        |        |        |  |
| 0x1B    |                  | OUT_TEMPM[15:8] |        |            |        |        |        |        |  |
| 0x1C    | OUT_TEMPH[23:16] |                 |        |            |        |        |        |        |  |

| Name      | Definition                        | Length | Туре |
|-----------|-----------------------------------|--------|------|
| ADCFlag   | Internal data output ADC          | 1      | R    |
|           | interrupt flag bit, when it is    |        |      |
|           | "1", indicating that there is new |        |      |
|           | data output. Automatically        |        |      |
|           | clear after reading the data in   |        |      |
|           | OUT_X_H                           |        |      |
| OUT_X_L   | Gyro output lower 8 bits          | 8      | R    |
| OUT_X_M   | Gyro output intermediate 8 bits   | 8      | R    |
| OUT_X_H   | Gyro output high 8 bits           | 8      | R    |
| OUT_TEMPL | Gyro output lower 8 bits          | 8      | R    |
| OUT_TEMPM | Gyro output intermediate 8 bits   | 8      | R    |
| OUT_TEMPH | Gyro output high 8 bits           | 8      | R    |

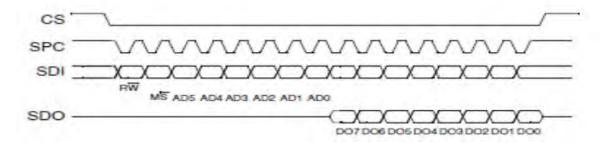

#### **Protocol**

#### (1) I2C interface

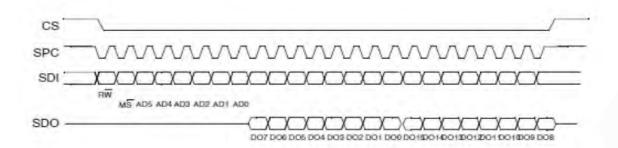
The SDO pin configuration can set the device address of the chip to 1101001 (SDO is tied to high level) or 1101000 (SDO is connected to low level). The reading and writing is determined by the lowest bit of the device address. "1" stands for reading, "0" The representative writes. The serial 8-bit bidirectional data transmission bit rate is up to 100kb/s in standard mode and up to 400kb/s in fast mode.

| Command | SAD[6:1] | SAD[0]=SDO | R/W | SAD+R/W       |
|---------|----------|------------|-----|---------------|
| Read    | 110100   | 0          | 1   | 11010001(D1h) |
| Write   | 110100   | 0          | 0   | 11010000(D0h) |
| Read    | 110100   | 1          | 1   | 11010011(D3h) |
| Write   | 110100   | 1          | 0   | 11010010(D2h) |

When using the I2C protocol, the received data is first used as the address of the internal register, and then the data is read and written. For different situations, it is divided into the following four types: where ST is START and SAD is the slave device address. SAK indicates the response signal from the slave, SUB indicates the internal address of the device to be accessed by I2C, DATA indicates the transmitted data, MAK indicates the host response signal, NMAK indicates that the host does not respond, and SP indicates the end of STOP.




#### 2) SPI interface


The chip supports the standard 4-wire slave mode, using mode 3, ie CPOL=1, CPHA=1, and data length 8 bits.

The highest bit is transmitted first when SPI transfers serial data, and the baud rate can be as high as 5 Mbps. The join address is automatically incremented by 1 to complete multi-byte read and write. The read and write control is determined by the first bit of the transmission. "0" indicates the write operation, "1" indicates the read operation, the second bit determines whether the byte operation is a single byte operation, and "0" indicates the single byte read and write. "1" indicates multi-byte read and write operations.

Single byte reading: RW is "1", MS is "0";



Multi-byte reading: RW is "1", MS is "1". Sent the first address (AD5~AD0), Then the address is automatically increased by 1.



## **Gyro100**-1000 MEMSGyroscope Technical Manual

## Wuxi Bewis Sensing Technology LLC

Address: Building 30, No. 58 Xiuxi Road, Binhu District, Wuxi City

Hotline: 400-618-0510
Tel: +86 510 85737178-801
Email: sales@bwsensing.com
Website: www.bwsensing.com